1,279 research outputs found

    Spectral deferred corrections with fast-wave slow-wave splitting

    Get PDF
    The paper investigates a variant of semi-implicit spectral deferred corrections (SISDC) in which the stiff, fast dynamics correspond to fast propagating waves ("fast-wave slow-wave problem"). We show that for a scalar test problem with two imaginary eigenvalues iλ_fast, iλ_slow, having Δt(|λ_fast|+|λ_slow|)<1 is sufficient for the fast-wave slow-wave SDC (FWSW-SDC) iteration to converge and that in the limit of infinitely fast waves the convergence rate of the non-split version is retained. Stability function and discrete dispersion relation are derived and show that the method is stable for essentially arbitrary fast-wave CFL numbers as long as the slow dynamics are resolved. The method causes little numerical diffusion and its semi-discrete phase speed is accurate also for large wave number modes. Performance is studied for an acoustic-advection problem and for the linearised Boussinesq equations, describing compressible, stratified flow. FWSW-SDC is compared to a diagonally implicit Runge-Kutta (DIRK) and IMEX Runge-Kutta (IMEX) method and found to be competitive in terms of both accuracy and cost

    A Model for Nonlinear Interactions of Internal Gravity Waves with Saturated Regions

    Get PDF
    A model for interactions between non-hydrostatic gravity waves and deep convective narrow hot towers is presented. The starting point of the derivation are the conservation laws for mass, momentum and energy for compressible flows combined with a bulk micro-physic model. Using multiscale asymptotics, a set of leading order equations is extracted, valid for the specific scales of the investigated regime. These are a timescale of 100 s, a horizontal and vertical lengthscale of 10 km for the wave dynamics plus a second horizontal lengthscale of 1 km for the narrow hot towers. Because of the comparatively short horizontal scales, Coriolis effects are negligible in this regime. The leading order equations are then closed by applying conditional averages over the hot tower lengthscale, leading to a closed model for the wave-scale that retains the net effects of the smaller scale dynamics. By assuming a systematically small saturation deficit in the ansatz, the small vertical displacements arising in this regime suffice to induce leading order changes of the saturated area fraction. The latter is the essential parameter in the model arising from the micro-physics

    Collective excitations of atomic Bose-Einstein condensates

    Full text link
    We apply linear-response analysis of the Gross-Pitaevskii equation to obtain the excitation frequencies of a Bose-Einstein condensate confined in a time-averaged orbiting potential trap. Our calculated values are in excellent agreement with those observed in a recent experiment.Comment: 11 pages, 2 Postscript figures, uses psbox.tex for automatic figure inclusion. More info at http://amo.phy.gasou.edu/bec.htm

    Moisture - Gravity Wave Interactions in a Multiscale Environment

    Get PDF
    Starting from the conservation laws for mass, momentum and energy together with a three species, bulk microphysic model, a model for the interaction of internal gravity waves and deep convective hot towers is derived by using multiscale asymptotic techniques. From the resulting leading order equations, a closed model is obtained by applying weighted averages to the smallscale hot towers without requiring further closure approximations. The resulting model is an extension of the linear, anelastic equations, into which moisture enters as the area fraction of saturated regions on the microscale with two way coupling between the large and small scale. Moisture reduces the effective stability in the model and defines a potential temperature sourceterm related to the net effect of latent heat release or consumption by microscale up- and downdrafts. The dispersion relation and group velocity of the system is analyzed and moisture is found to have several effects: It reduces energy transport by waves, increases the vertical wavenumber but decreases the slope at which wave packets travel and it introduces a lower horizontal cutoff wavenumber, below which modes turn into evanescent. Further, moisture can cause critical layers. Numerical examples for steady-state and time-dependent mountain waves are shown and the effects of moisture on these waves are investigated

    Abandonment of crop lands leads to different recovery patterns for ant and plant communities in Eastern Europe

    Get PDF
    Significant proportion of crop lands have been abandoned as management strategies have changed in Central and Eastern Europe in the past decades. The study of insect versus plant communities in such areas could help us understand how these processes take place, and whether these communities return to a semi-natural state maintained by human activities. Amongst insects ants, as ecosystem engineers, are a perfect target group in this respect. We studied epigaeic ant and plant communities of abandoned old-fields in Romania. Contrary to our expectations, the total number of ant species did not increase with time during succession on old-fields contrary to plants, where an increase was registered in the total number. Disturbancetolerant ant species dominated the ant communities throughout the successional gradient, while in the case of plants a transition was found from weed-dominated to semi-natural communities. The diversity of both ant and plant communities increased after the 1-year stage, but the patterns were different. While a return to semi-natural state could be observed in plants during old-field succession, such a definite change did not occur in ants. This might be caused by the landscape context: the lack of connectivity of old-fields to larger natural areas. While plant propagules of semi-natural and natural habitat species can still successfully colonize the old fields even under such conditions, ant colonizers are mainly disturbance-tolerant species typical for agricultural areas, which can be hardly replaced by typical grassland species. Our findings underline the existence of important discrepancies between plant and ant community succession, mostly treated as paralleling each other. This is the first study to handle the effect of abandonment on ant and plant communities simultaneously in Eastern Europe

    Spatiotemporal changes to low flow and catchment storage following a step change rainfall decline in Southwest Western Australia

    Get PDF
    Understanding how summer low flows in a Mediterranean climate are influenced by climate and land use is critical for managing both water resources and in-stream ecohydrological health. The Eucalyptus forest ecosystems of southwestern Australia are experiencing a drying and warming climate, with a regional step decline in rainfall in the mid-1970s. Reductions in catchment water storage may be exacerbated by the deep rooting habit of key overstorey species (>30 m has been reported), which can buffer against drought during dry years. Root exploitation of deep soil moisture reserves and/or groundwater can accelerate the long term decline in summer low flows, with a trend towards more ephemeral flow regimes. In contrast, conversion of forests to agricultural land in some catchments can lead to counter-trends of increased low flows due to a rise in groundwater pressure. These are invariably associated with an increase in stream salinity as regolith stores of salt are mobilized. There has also been extennsive reforestation of farmland in some catchments. In this study we perform a detailed analysis of changes to annual summer seven day low flow trends in perennial catchments and flow duration curves in ephemeral catchments across 39 catchments in south-western Australia that have long term records of runoff, rainfall and land cover. Results showed that 15% of catchments exhibited increased low flows and 85% decreased flows or decreased flow days since the 1970s. Significant downward step changes in low flows were observed in 17 catchments (44%). The earliest downward step changes occurred in three catchments between 1981-82 (a lag of one decade after the rainfall decline), with the most recent step changes for five catchments occurring in 2001-2004 (three decades after rainfall decline). Eleven catchments were already ephemeral in the 1970s, but exhibited continued declines in the number of annual flow days over subsequent decades. Step changes occur when groundwater becomes disconnected or reconnected to the stream invert, with disconnection associated with rainfall decline and vegetative water use. The statistical methods we used in this study can be applied to any catchment in order to aid land and water managers assess the impact of climate change and land cover manipulation on low flow response

    A Nonparametric Model for Right-Wing Authoritarianism

    Get PDF
    Faculty advisor: Nathaniel E. HelwigThis research was supported by the Undergraduate Research Opportunities Program (UROP)

    NGC 6738: not a real open cluster

    Full text link
    A photometric, astrometric and spectroscopic investigation of the poorly studied open cluster NGC 6738 has been performed in order to ascertain its real nature. NGC 6738 is definitely not a physical stellar ensemble: photometry does not show a defined mean sequence, proper motions and radial velocities are randomly distributed, spectro-photometric parallaxes range between 10 and 1600 pc, and the apparent luminosity function is identical to that of the surrounding field. NGC 6738 therefore appears to be an apparent concentration of a few bright stars projected on patchy background absorption.Comment: A&A, in press (compared with first submission to astro-ph, now Table 2 and Figure 4 are replaced with corrected versions

    HIV Exploits Antiviral Host Innate GCN2-ATF4 Signaling for Establishing Viral Replication Early in Infection.

    Get PDF
    Antiviral innate host defenses against acute viral infections include suppression of host protein synthesis to restrict viral protein production. Less is known about mechanisms by which viral pathogens subvert host antiviral innate responses for establishing their replication and dissemination. We investigated early innate defense against human immunodeficiency virus (HIV) infection and viral evasion by utilizing human CD4+ T cell cultures in vitro and a simian immunodeficiency virus (SIV) model of AIDS in vivo Our data showed that early host innate defense against the viral infection involves GCN2-ATF4 signaling-mediated suppression of global protein synthesis, which is exploited by the virus for supporting its own replication during early viral infection and dissemination in the gut mucosa. Suppression of protein synthesis and induction of protein kinase GCN2-ATF4 signaling were detected in the gut during acute SIV infection. These changes diminished during chronic viral infection. HIV replication induced by serum deprivation in CD4+ T cells was linked to the induction of ATF4 that was recruited to the HIV long terminal repeat (LTR) to promote viral transcription. Experimental inhibition of GCN2-ATF4 signaling either by a specific inhibitor or by amino acid supplementation suppressed the induction of HIV expression. Enhancing ATF4 expression through selenium administration resulted in reactivation of latent HIV in vitro as well as ex vivo in the primary CD4+ T cells isolated from patients receiving suppressive antiretroviral therapy (ART). In summary, HIV/SIV exploits the early host antiviral response through GCN2-ATF4 signaling by utilizing ATF4 for activating the viral LTR transcription to establish initial viral replication and is a potential target for HIV prevention and therapy.IMPORTANCE Understanding how HIV overcomes host antiviral innate defense response in order to establish infection and dissemination is critical for developing prevention and treatment strategies. Most investigations focused on the viral pathogenic mechanisms leading to immune dysfunction following robust viral infection and dissemination. Less is known about mechanisms that enable HIV to establish its presence despite rapid onset of host antiviral innate response. Our novel findings provide insights into the viral strategy that hijacks the host innate response of the suppression of protein biosynthesis to restrict the virus production. The virus leverages transcription factor ATF4 expression during the GCN2-ATF4 signaling response and utilizes it to activate viral transcription through the LTR to support viral transcription and production in both HIV and SIV infections. This unique viral strategy is exploiting the innate response and is distinct from the mechanisms of immune dysfunction after the critical mass of viral loads is generated
    corecore